

Mechanical Engineering Dept. Department

Syllabus ME 420: Materials Selection and Design (3-0-3)

Course Catalog Description:

Mechanical design process, materials properties and indices, product shape, multiple constraints, conflicting objectives, hybrid materials, impact of materials selection on the environment, extensive case studies.

Course Pre-requisites:

• ME 205: Materials Science

• ME 207: Materials Science for CHE

• ME 216: Materials Science and Engg.

Course Objectives:

- 1. To provide students a thorough systematic approach to the selection of materials required in mechanical design.
- 2. To familiarize the students with material properties and materials manufacturing processes and a process selection based on a component size, shape, properties, and cost.
- 3. To teach students how to deal with multiple constraints and conflicting objectives including realistic constraints involving the economics, environment, manufacturability, and sustainability.
- 4. To introduce the students to the methodologies for designing hybrid materials.

Course Learning Outcomes:

- CLO1. Demonstrate how performance indices are derived and combined with material property charts to identify potential materials for specific applications
- CLO2. Construct and use material property charts to identify a small set of materials meeting mechanical, physical, and cost constraints
- CLO3. Use material processing charts to select fabrication processes that meet design requirements
- CLO4. Construct a translation table for problems involving either multiple constraints or conflicting objectives, and systematically identify candidate materials
- CLO5. Design hybrid materials that fill gaps on the material property charts
- CLO6. Work in small teams to apply material selection processes on a term project involving a relevant local challenge related to material selection and present the findings in a presentation/poster

Learning Resources:

• Ashby, M. F., Materials Selection in Mechanical Design, 5th ed., 2017.

Lecture Assessment Plan:

Assessment Task	Week Due	Weight
Quiz 5	11	4.0%
Assignment 5	11	3.0%
Assignment 6	13	3.0%
Final Exam	16	25.0%
Project	16	17.0%
Assignment 1	3	3.0%
Quiz 1	3	4.0%
Assignment 2	5	3.0%
Quiz 2	5	4.0%
Quiz 3	7	4.0%
Assignment 3	7	3.0%
Midterm Exam	8	20.0%
Assignment 4	9	3.0%
Quiz 4	9	4.0%

Lecture Weekly Schedule:

Week#	Topics
1	Introduction: Materials and Design
2	Engineering Materials and Their Properties
3	Material Property Charts (Using Granta EduPack Software if available)
4	Materials Selection - The Basics
5	Materials selection (without shape) - Case Studies
6	Processes and Their Effect on Properties
7	Processes Selection and Cost
8	Multiple Constraints and Conflicting Objectives
9	Multiple Constraints and Conflicting Objectives - Case Studies
10	Selection of Material and Shape
11	Material and Shape - Case Studies
12	Designing Hybrid Materials

Week#	Topics
13	Hybrids - Case Studies
14	Materials and the Environment
15	Sustainable Response to Forces for Change