

## **Mechanical Engineering Dept. Department**

# Syllabus ME 447: Intelligent Energy Systems (3-0-3)

#### **Course Catalog Description:**

Overview of systems engineering concepts; fundamentals of energy systems; energy and the environment; instrumentation and control of energy systems; energy systems control fundamentals; energy systems control design. Development of intelligent control for energy systems, automation network protocols, distributed control systems, and smart grids. Application of multi-agent methods for energy monitoring and management, Internet of Things (IoT) to energy systems, big data analytics for energy systems, power over Ethernet (PoE) for energy systems.

#### **Course Objectives:**

- 1. Introduce students to systems engineering concepts as well as to environmental and energy systems/technologies and their inputs, processes, and outputs
- 2. Enable the student to optimize the energy costs and performance of automation energy systems while meeting the functional needs and expectations of end-users
- 3. Make students able to develop and design intelligent, reliable and efficient energy management systems that suit the ever-changing needs of the environment and technology in the energy industry
- 4. Make students able to develop and design intelligent, reliable and efficient energy management systems that suit the ever-changing needs of the environment and technology in the energy industry

#### **Course Learning Outcomes:**

- CLO1. Be able to explain the concepts of energy management systems.
- CLO2. Be able to describe sustainable techniques that achieve energy efficiency goals.
- CLO3. Be able to independently identify and solve problems using critical thinking
- CLO4. Be able to use modern software tools, processes, devices, and diagnostic tools for energy systems engineering design and development
- CLO5. Be able to appreciate societal, environmental and economics impact of energy savings
- CLO6. Be able to appreciate ethical issues while designing and developing intelligent energy management systems

#### **Learning Resources:**

• • Systems Engineering Principles and Practice, by A. Kossiakoff, S. M. Biemer, S. J. Seymour, D. A. Flanigan (ISBN-10: 1119516668) • Analysis and Design of Energy Systems, by B.K. Hodge and

Robert Taylor (ISBN-10: 0135259738) • Energy and the Environment, by R. Ristinen (ISBN-10: 111935529X) • Fundamentals of Energy Regulation, by J. A. Lesser, L. R. Giacchino (ISBN-10: 0910325200) • Modeling, Assessment, and Optimization of Energy Systems by Hoseyn Sayyaadi (ISBN: 9780128166574)

#### **Lecture Assessment Plan:**

| Assessment Task               | Week Due | Weight |
|-------------------------------|----------|--------|
| Assignments                   | None     | 20.0%  |
| Quizzes                       | None     | 10.0%  |
| Major Exams                   | None     | 20.0%  |
| Term Project and case studies | None     | 20.0%  |
| Final Exam                    | None     | 30.0%  |

### **Lecture Weekly Schedule:**

| Week# | Topics                                                   |
|-------|----------------------------------------------------------|
| 1     | Systems Engineering Overview and Stakeholder Analysis    |
| 2     | Fundamentals of Energy Systems                           |
| 3     | Energy and the Environment                               |
| 4     | Instrumentation and Control of Energy Systems            |
| 5     | Instrumentation and Control of Energy Systems (Continue) |
| 6     | Energy Systems Control Fundamentals                      |
| 7     | Energy Systems Control Design                            |
| 8     | Intelligent Control for Energy Systems                   |
| 9     | Intelligent Control for Energy Systems (Continue)        |
| 10    | Automation Network Protocols                             |
| 11    | Distributed Control Systems and Smart Grids              |
| 12    | Multi-Agent Systems for Energy Monitoring and Management |
| 13    | Internet of Things (IoT): Applications to Energy Systems |
| 14    | Big Data Analytics for Energy Systems                    |
| 15    | Power over Ethernet (PoE) for Energy Systems             |