

Mechanical Engineering Dept. Department

Syllabus

ME 490: Specia topics in Mechanical engineering (3-0-3)

Course Catalog Description:

This course will provide the fundamentals of nuclear thermal-hydraulics for reactor design and safety assessment. It will cover a detailed understanding of thermal-hydraulic topics in different reactor designs. In addition, dedicated hands-on exercises will be performed to analyze real-life design and safety problems in light water reactors (which are currently in operation).

Course Pre-requisites:

• ME 448: Engineering of Nuclear Reactors

Course Objectives:

- 1. gain detailed knowledge of different reactor types along with their main design and operational characteristics.
- 2. gain detailed knowledge nuclear thermal hydraulics.
- 3. learn the fundamentals of core thermal hydraulic design.
- 4. learn the required computational methods to perform nuclear thermal hydraulic analyses of different reactor designs.
- 5. perform thermal hydraulic analyses of a design-based scenario.
- 6. perform thermal hydraulic analyses an accident-based scenario.

Course Learning Outcomes:

CLO1. gain detailed knowledge of different reactor types along with their main design and operational characteristics.

- CLO2. gain detailed knowledge nuclear thermal hydraulics.
- CLO3. perform thermal hydraulic analyses of a design-based scenario.
- CLO4. perform thermal hydraulic analyses an accident-based scenario.
- CLO5. learn the fundamentals of core thermal hydraulic design.

CLO6. learn the required computational methods to perform nuclear thermal hydraulic analyses of different reactor designs.

Learning Resources:

- N. E. Todreas, M. S. Kazimi, Nuclear Systems, Vol. 1, Taylor and Francis, 2012
- Research papers on related topics

Lecture Assessment Plan:

Assessment Task	Week Due	Weight
Term project	14	30.0%
Final exam	15	15.0%
Midterm	8	15.0%
Assignments	bi-weekly	20.0%
Quizzes	bi-weekly	20.0%

Lecture Weekly Schedule:

Week#	Topics
1	Nuclear reactor designs (PWR, BWR, LMFR, SMR, HTGR,)
2	Introduction to nuclear thermal hydraulics
3	Fundamentals of nuclear thermal hydraulics for reactor design and safety
4	Computational methods to perform nuclear thermal hydraulics analyses
5	Computational methods to perform nuclear thermal hydraulics analyses (Continue)
6	Thermal hydraulic analyses of a nuclear reactor design-based scenario
7	Thermal hydraulic analyses of a nuclear reactor design-based scenario (Continue)
8	Thermal hydraulic analyses of a nuclear reactor design-based scenario (Continue)
9	Thermal hydraulic analyses of a nuclear reactor design-based scenario (Continue)
10	Thermal hydraulic analyses of a nuclear reactor accident-based scenario
11	Thermal hydraulic analyses of a nuclear reactor accident-based scenario (Continue)
12	Thermal hydraulic analyses of a nuclear reactor accident-based scenario (Continue)
13	Thermal hydraulic analyses of a nuclear reactor accident-based scenario (Continue)
14	Thermal hydraulic analyses of a nuclear reactor severe accident-based scenario
15	Thermal hydraulic analyses of a nuclear reactor severe accident-based scenario (Continue)